Titel: | Leonh. Weber's Raumwinkelmesser. |
Fundstelle: | Band 259, Jahrgang 1886, S. 122 |
Download: | XML |
Leonh. Weber's Raumwinkelmesser.
Mit Abbildung.
L. Weber's Raumwinkelmesser.
Um für die verschiedenen Plätze von Räumlichkeiten eine von dem für photometrische
Messungen wesentlichen, gerade vorhandenen Helligkeitsgrade des Beobachtungstages
unabhängige, die Güte des Platzes kennzeichnende Zahl zu finden, hat Prof. Leonh. Weber in Breslau den im Folgenden nach der Zeitschrift für Instrumentenkunde, 1884 * S. 343
beschriebenen Raum Winkelmesser construirt. Die Tageshelligkeit der einzelnen Plätze
eines Zimmers ist zum gröſsten Theile abhängig von der Menge des unmittelbar auf denselben fallenden Himmelslichtes und
erst in zweiter Linie von dem durch Reflexion an Wänden und gegenüber liegenden
Gebäuden herrührenden Lichte- letzteres kommt erst für die sehr weit vom Fenster
gelegenen Plätze in Betracht und ist hier nicht weiter berücksichtigt worden.
Für den vorliegenden Fall läſst sich nun das Lambert'sche Gesetz durch die Gleichung h = 4H μ ω sin α ausdrücken. Die fragliche Helligkeit h auf wagerechter Fläche ist proportional der
Helligkeit H des beleuchtenden Himmels, der Albedo
(Licht reflectirenden Kraft) μ der beleuchteten Fläche,
dem Raumwinkel ω, unter welchem der Himmel von der
beleuchteten Fläche aus sichtbar ist, und endlich dem Sinus des Höhenwinkels α, unter welchem die Lichtstrahlen auf die Fläche
fallen.
Von diesen vier Gröſsen sind bezüglich der hier nur in Betracht kommenden
Vergleichung verschiedener Plätze unter einander die Albedo der beleuchteten Fläche,
sowie die Helligkeit des Himmels als constant zu setzen und es folgt daraus, daſs
als Maſs für die Helligkeitsgüte eines Platzes das
Product ω sin α allein übrig bleibt. Den Raumwinkel ω erhält man aber auf folgende Weise: Von
einem Punkte der beleuchteten Fläche denke man sich alle Grenzstrahlen gezogen,
welche die Kanten der Fenster bezieh. der gegenüber liegenden Dächer u.s.w.
streifend noch gerade auf freien Himmel treffen. Alle diese Strahlen begrenzen in
ihrer Gesammtheit dasjenige Stück des Himmels, von welchem der betreffende Punkt
noch direktes Licht erhält und dessen Verhältniſs zur
ganzen Himmelsfläche also den Raumwinkel ω
darstellt.
Dieser Raumwinkel wird nun nach L. Weber's Vorschlag in
Quadratgrad gemessen, eine Einheit, welche man
erhält, wenn man auf der Kugeloberfläche ein Quadrat construirt, dessen Seitenlänge
gleich 1° ist. Die gesammte Kugeloberfläche hat dann rund 41253 solcher Quadratgrad.
Bei einem Halbmesser der Kugel von 114mm,6 würde
die Gröſse eines Quadratgrades durch ein Quadrat von 2mm Seitenlänge dargestellt, oder ein Quadratgrad wäre dann 4qmm. Diese Quadratgrade werden nun mit Hilfe des
nachstehend veranschaulichten Apparates gleichzeitig mit dem Höhenwinkel α gemessen.
Die Grundplatte G des Apparates wird mittels der
Fuſsschrauben unter
Zuhilfenahme des Lothes E, welches von einem an der
Platte P befestigten Halter H herunterhängt, auf dem zu untersuchenden Platze wagerecht gestellt.
Dabei ist die um Gelenke drehbare Platte P so zu
stellen, daſs die an ihr befindliche Marke m auf den
Nullpunkt des Gradbogens B zeigt. Bei dieser
Aufstellung würde ein im Horizonte befindlicher Lichtpunkt sein Bild durch die Linse
L genau auf den kleinen Stift c werfen. Die Brennweite der Linse ist so gewählt, daſs
bei einem Abstande derselben von 114mm,6 ein
scharfes Bild beispielsweise einer im
Horizonte befindlichen Sonnenscheibe entstände. Die der Linse zugewendete Seite von
P wird nun mit einem in Quadrate von 2mm Seitenlänge eingetheilten Papiere bedeckt,
welches theils durch den Stift c, theils durch kleine
Messingfedern festgehalten wird. Die Linse wird alsdann gerade gegen das Fenster
gerichtet. Von einem durch Fensterkreuze und gegenüber liegende Häuser u.s.w.
unregelmäſsig begrenzten Stück Himmel, welches von der Tischfläche im Inneren eines
Zimmers sichtbar ist, wird ein ebenso unregelmäſsig gestaltetes Bild auf P entworfen werden. Zeichnet man nun die Umrisse dieses
Bildes mit einem Bleistifte nach und zählt die Quadrate desselben aus bezieh.
schätzt deren Bruchtheile, so erhält man unmittelbar den Raumwinkel ω, welcher der Gröſse des sichtbaren Himmelsstückes
entspricht, in Quadratgrad. Um das Nachzeichnen und Schätzen zu erleichtern, ist das
getheilte Papier auf eine um c drehbare Kreisscheibe
gezogen, welche so eingestellt wird, daſs die Linien möglichst genau mit den
Umrissen des Fensters zusammenfallen.
Textabbildung Bd. 259, S. 123 Was die gleichzeitige Ermittelung von α
betrifft, so müſste man, streng genommen, für alle einzelnen Theile des sichtbaren
Himmelsstückes eine gesonderte Einstellung machen, indem man die Bilder genau auf
den Stift c fallen lieſse. Für die hier in Betracht
kommenden Anwendungen ist es indessen vollkommen ausreichend, einen mittleren
Höhenwinkel α zu suchen. Dies wird am einfachsten
dadurch erreicht, daſs man die Platte P so weit neigt,
bis das Bild des zu messenden Himmelsstückes möglichst gleichmäſsig um c gruppirt ist, was mit Hilfe der Theilstriche auf dem
Papiere mit ausreichender Sicherheit abzuschätzen ist. Die Ablesung der Marke m gibt dann den mittleren Höhenwinkel α.
Das Product ω sin α kann als der reducirte Raumwinkel
bezeichnet werden.
Derselbe gibt also eine Zahl an, welche, wenn man von dem reflectirten Lichte der
Wände absieht, als relatives Maſs für die Helligkeitsgüte eines Platzes gelten kann.
Nach den sehr zahlreichen Messungen, die Prof. Herm.
Colin in Breslauer Schulen anstellte und über welche er auf dem
hygienischen Congresse im Haag Mittheilung machte, soll der reducirte Raumwinkel
eines guten Platzes in gewöhnlichen Schulräumen mindestens 50 Quadratgrad betragen.
(Vgl. auch 1885 257 * 68.)