Titel: | Ueber den Einfluss des Barometerstandes auf das Diagramm und den Dampfverbrauch der Dampfmaschinen. |
Autor: | Leopold Kliment |
Fundstelle: | Band 314, Jahrgang 1899, S. 129 |
Download: | XML |
Ueber den Einfluss des Barometerstandes auf das
Diagramm und den Dampfverbrauch der Dampfmaschinen.
Von diplom. Maschineningenieur Leopold Kliment in Brünn.
Ueber den Einfluss des Barometerstandes auf das Diagramm und den
Dampfverbrauch der Dampfmaschinen.
Zu den folgenden Ueberlegungen wurde ich veranlasst durch Erfahrungen an einer
Dampfmaschinenanlage, welche sich etwa 1000 m über dem Meeresspiegel befindet, und
bei einem Barometerstande von etwa 660 mm Quecksilbersäule arbeitet.
Der Einfluss des Barometerstandes wird gewöhnlich bei der Untersuchung der
Dampfmaschine, und im allgemeinen mit Recht, vernachlässigt, und zwar erstens, weil
in unseren Gegenden der Einfluss vernachlässigbar klein ist, zweitens dies noch um
so mehr wird, als der Maschinenbauer die Atmosphäre mit dem Druck von 1 kg pro 1 qcm
rechnet, welcher Druck einer Quecksilbersäule von 738 mm entspricht, die unserem
mittleren Barometerstande sehr nahe kommt.
Handelt es sich jedoch um einen Fall wie den obigen einerseits, oder den Fall einer
unterirdischen Wasserhaltungsmaschine andererseits, so wird man dazu geführt, den
durch den Titel gekennzeichneten Einfluss zu untersuchen.
Da diese Frage von praktischen Ingenieuren oft gestreift wird, welche dann gewöhnlich
nicht Müsse finden, dieselbe weiter zu verfolgen, und weil mir selbst aus der
Litteratur eine Behandlung in nachstehender Form nicht bekannt ist, so halte ich
meine über diesen Gegenstand angestellten Studien für interessant genug, um
dieselben an dieser Stelle zu veröffentlichen.
Textabbildung, Bd. 314, S. 129
Fig. 1.
Vorausgesetzt soll im weiteren werden, dass der Federmassstab des Indikators den
Drücken proportional ist, Weil eine Uebertragung auf den gegenteiligen Fall leicht
Möglich ist, und soll zunächst eine Zweicylinderverbundmaschine in Betracht gezogen
werden, um ebenso einfach als allgemein genug zu sein.
Fig. 1 stellt das Hochdruckdiagramm; Fig. 2 das Niederdruckdiagramm einer
Zweicylinderverbundmaschine dar, und ist die vom Indikator geschriebene
atmosphärische Linie mit aa bezeichnet.
Um die absolute Nulllinie zu finden, zieht man gewöhnlich eine parallele zur
atmosphärischen Linie im Abstande, welcher dem Federmassstabe des Indikators
entspricht, und ist diese Regel, wie eingangs erwähnt, in den gewöhnlichen
Fällen mit vernachlässigbaren Fehlern verbunden.
Richtiger soll man so verfahren, dass auf dem Federmassstabe 0 1 = f der Barometerstand, 0b welcher
während des Versuches herrschte, in entsprechender Weise abgetragen wird. Es sei
bemerkt, dass der Punkt b ebensogut zwischen den
Punkten 0 und 1, als auch
über dem Punkt 1 liegen kann.
Textabbildung, Bd. 314, S. 129
Fig. 2.
Ueberträgt man nun diese Punkte, so dass b auf die
atmosphärische Linie aa des abgenommenen
Indikatordiagramms zu liegen kommt, so ist durch den Punkt 0 die absolute Nulllinie in richtiger Weise bestimmt, während die Linie
11 dem Drucke von 1 kg pro 1 qcm bezw. dem Druck
einer metrischen Atmosphäre entspricht.
Dieses Verfahren zu beachten, hat bei der Beurteilung des Vakuums nach dem Diagramm
eines Niederdruckcylinders besonderen Wert, da dieses Vakuum durch die Strecke v (Fig. 2) bestimmt
wird. Es ist leicht zu ersehen, dass man bei der üblichen Methode, nach welcher die
Linie 11 mit der atmosphärischen Linie zusammenfällt,
einen Fehler begehen würde, der um so grösser wird, je mehr der Barometerstand
während des Versuches von der metrischen Atmosphäre abweicht. Nachdem das
Vorstehende festgelegt wurde, welches die absolute Nulllinie in richtiger Weise
einzuzeichnen gestattet, soll der Frage näher getreten werden, welchen Einfluss der
geänderte Barometerstand auf das Diagramm nimmt.
Denken wir uns z.B. die Maschinen- und Kesselanlage in einem geschlossenen Raum, in
welchem der Luftdruck auf verschiedene Höhen gebracht werden kann, so sieht man am
besten durch Betrachten der beiden Fig. 1 und 2 ein, dass die atmosphärische Linie aa verschiedene Lagen annehmen wird, ohne dass sich im
übrigen an den Diagrammen etwas ändert, so lange die absoluten Drücke dieselben
bleiben.
Der Indikator selbst bringt dies nicht unmittelbar zum Ausdruck, da derselbe die
atmosphärische Linie bei einmaliger Einstellung stets auf derselben Stelle schreibt,
doch wird derselbe die Diagrammlinie um so höher oder tiefer schreiben, je geringer
bezw. je höher der äussere Luftdruck ist.
Die Diagrammlinien würden demnach bei gleicher Belastung und bei sonst ungeändert
laufender Maschine vom Indikator parallel verschoben gezeichnet werden, und zwar
parallel verschoben um die Differenz in den Luftdrücken, bei welchen die Diagramme
genommen wurden.
Aber auch die absolute Nulllinie würde nach dem eingangs behandelten Verfahren
sich um dieselbe Strecke verschieben.
Würde man nun alle Diagramme, bei verschiedenen Luftdrücken genommen, auf Pauspapier
für sich kopieren, und diese Kopien so zusammen legen, dass die absoluten Nulllinien
übereinander fallen, so würden auch die Diagrammlinien übereinander fallen müssen,
und man würde deutlich sehen, dass nur die atmosphärische Linie aa sich dem Luftdruck entsprechend verschoben hat.
Als Grenzfall sei hier noch erwähnt, dass z.B. die atmosphärische Linie aa mit der absoluten Nulllinie zuzammenfallen, falls
die Maschinenanlage im absolut luftleeren Raume arbeiten würde, wie
selbstverständlich erscheint.
Das Diagramm und auch der Dampfverbrauch würde sich demgemäss nicht ändern, wenn die
absoluten Drücke dieselben bleiben würden, selbst wenn die Anlage unter
verschiedenen Luftpressungen arbeiten sollte.
Es wird also zu untersuchen sein, ob diese absoluten Spannungen dieselben
bleiben.
Bezeichnet in Fig. 1 der Punkt E das Ende der Füllung im Hochdruckcylinder, und der Punkt A in Fig. 2 den Beginn
des Ausströmens aus dem Niederdruckcylinder, so kann zunächst konstatiert werden,
dass sich der Dampf von E angefangen bis A in der Maschine vollkommen abgeschlossen befindet,
und dass somit ein Einfluss durch den äusseren Luftdruck ausgeschlossen erscheint,
wenn nur der Punkt E konstant erhalten bleibt.
Von A angefangen strömt der Dampf in den Kondensator.
Der Kondensatordruck ist seiner absoluten Grösse nach nahezu konstant. Der warme
Dampf mischt sich mit dem Kühlwasser, oder wird an den Kondensatorflächen abgekühlt,
und durch die erreichte Endtemperatur ist der Kondensatordruck in erster Linie
bestimmt. In zweiter Linie ist die eventuell mit dem Wasser, sowie durch
Undichtheiten eindringende Luft bestimmend für den Kondensatordruck. (Auch das Nach
verdampfen. D. R.)
Bei den vorkommenden Schwankungen des Luftdruckes ist ohne weiteres einzusehen, dass
dieser Einfluss bei dicht gehaltenen Verbindungen ein ganz verschwindender ist.
Immerhin kann man sagen, dass der absolute Kondensatordruck mit wachsendem Luftdruck
steigen muss.
Es würde sich daraus die Regel ergeben, die Luftpumpe für Orte mit höherem
Barometerstande grösser zu dimensionieren, um gleichen Kondensatordruck zu erhalten.
An dieser Stelle sei auch bemerkt, dass die gewöhnlichen Vakuummeter nicht geeignet
sind, den Kondensatordruck in richtiger Weise anzugeben. Auf die Feder des
Vakuummeters wirkt einerseits der Kondensatordruck und andererseits der äussere
Luftdruck, weshalb die Angaben nur relative sind. Für genauere Messungen muss ein
Quecksilbervakuummeter verwendet werden, in einer Konstruktion Fig. 3, welche gestattet, den absoluten
Kondensatordruck abzulesen.
Der Gegendruck im Niederdruckcylinder, welcher stets grösser ist als der
Kondensatordruck, kann dem Diagramme unter Beachtung des
Barometerstandes entnommen werden, wobei als selbstverständlich
vorausgesetzt wird, dass der Federmassstab experimentell bestimmt werde.
Textabbildung, Bd. 314, S. 130
Fig. 3.
Nachdem nun gezeigt worden ist, dass der absolute Kondensatordruck als unabhängig vom
Barometerstande betrachtet werden kann, und dass gegebenenfalls diese Unabhängigkeit
durch geeignete Bestimmung des Luftpumpenfördervolumens erreicht werden kann, so
bleibt nur einzig und allein der Einfluss zu betrachten, welchen der Barometerstand
ausübt, bevor die Füllung des Hochdruckcylinders beendet ist.
Setzen wir der Vereinfachung halber voraus, dass der Admissionsdruck mit dem
Kesseldruck übereinstimmt, indem die als konstant zu betrachtenden
Rohrleitungswiderstände hier vernachlässigt werden mögen, so lässt sich sagen, dass
der Kesseldruck seiner absoluten Grösse nach mit dem Barometerstande schwankt.
Der Grund ist darin zu suchen, dass das gebräuchliche Manometer nicht den absoluten
Kesseldruck, sondern nur den Ueberdruck über den jeweiligen Luftdruck anzeigt.
Schwankt der Luftdruck, so ändert das Manometer bei gleichem, absolutem
Kesseldruck seine Anzeige, weil auf die Manometerfeder einerseits der konstante
Kesseldruck, andererseits der veränderliche Luftdruck wirkt, und da der Kesselwärter
eine konstante Manometeranzeige, z.B. 10 at, einzuhalten hat, so ändert derselbe
unwillkürlich den absoluten Kesseldruck, welch letzterer Umstand gewöhnlich der
Berücksichtigung ganz entgeht.
Hinzugefügt muss noch werden, dass allerdings für praktische Verhältnisse die Angabe
des Ueberdruckes, also die Angabe des gewöhnlichen Manometers wichtig ist, da der
Kessel für einen gewissen Ueberdruck konstruiert wird.
Es geht nun aus Vorstehendem hervor, dass der wesentlichste Einfluss, welchen der
Barometerstand auf das Diagramm und den Dampfverbrauch nimmt, in der Admissionslinie
zu suchen ist, und dass dieselbe der absoluten Lage nach mit dem Barometerstande
schwankt.
An einem und demselben Orte beträgt die Schwankung des Barometerstandes etwa 1/20 at. Es würde
also ein Kessel bei höchstem Barometerstande, absolut genommen, um etwa 1/20 at höher
geheizt werden können, als bei niedrigstem Barometerstande.
Diese Differenz ist allerdings sehr gering und kann praktisch vernachlässigt
werden.
Diese Differenz wird aber an und für sich mehr in die Wagschale fallen, wenn man
Dampfanlagen an verschieden hochgelegenen Orten in Betracht zieht.
Es seien z.B. die Diagramme Fig. 1 und 2 an einem Orte bei 660 mm Barometerstand genommen,
dann hat die Admissionsspannung bei einem Federmassstabe 5 . 3 mm = 1 at = 1 kg pro 1 qcm 9½ at Ueberdruck betragen.
Würde nun eine ganz gleiche Maschinenanlage unter gleichen Verhältnissen an einem
Orte mit 738 mm Barometerstand, also unter dem Luftdrucke einer metrischen
Atmosphäre arbeiten, oder, was dasselbe ist, denkt man sich den Barometerstand der
vorigen Anlage auf 738 mm Quecksilbersäule erhöht, so ist nach Vorangehendem
festzuhalten, dass sich die absoluten Drücke nicht ändern, ausgenommen der
Admissionsdruck, und die atmosphärische Linie aa,
welche der Indikator schreibt, würde mit der Linie 11
zusammenfallen.
Um die gleiche Ueberdruckspannung im Kessel einzuhalten, würde die Kessel- bezw.
Admissionsspannung um den Betrag der Luftdruckvermehrung erhöht werden können, das
ist um 0,105 metrische Atmosphären.
Die gestrichelte Linie stellt in Fig. 1 diese
Druckerhöhung dar.
Um noch einen bestimmten Wert zu berechnen, nehmen wir an, die Maschine arbeitete bei
9½ at Admissionsspannung Ueberdruck mit ⅓ Füllung. Hierbei beträgt die mittlere
indizierte Spannung pm
auf den Hochdruckkolben reduziert etwa 7,5 at für die
Zweicylinderverbundmaschine.
Würde nun die Admissionsspannung bei nach Massgabe der Kurve gleichen Dampfgewichtes
reduzierter Füllung um 0,105 at steigen, so würde pm von 7,5 auf etwa 7,535 at sich erhöhen
oder rund um ½%.
Die Leistung der Maschine würde sich bei gleichem Dampfverbrauch um denselben
Prozentsatz erhöhen, oder es würde bei gleicher Leistung der Dampfverbrauch um etwa
½% her abgehen, im gegenteiligen Falle sich erhöhen.
Die als Beispiel gewählte Verbundmaschine würde bei 500 mm Bohrung des
Hochdruckcylinders 750 mm Bohrung des Niederdruckcylinders, bei 1000 mm Hub und 80
Umdrehungen pro Minute unter Berücksichtigung der Kolbenstangenstärke unter
vorstehenden Verhältnissen 495 indizieren und während 10 Stunden bei 6,75
kg Dampfverbrauch pro Indikatorpferd und Stunde während 10 Stunden 33410 kg
Speisewasser verbrauchen.
Bei um 0,105 at erhöhtem Barometerstande bezw. uni dieselbe Grösse erhöhter
Anfangsspannung würde die Maschine bei gleichem Speisewasserverbrauche 497,3
indizieren, oder während 10 Stunden für 495 i nur 33254 kg Speisewasser verbrauchen.
Diese wenn auch kleine Differenz kann immerhin eine Rolle spielen, wenn andere
Verhältnisse sich summierend hinzugesellen.
Aus dem Vorstehenden würde sich also ergeben, dass die Schwankung des
Barometerstandes an einem und demselben Orte praktisch vernachlässigt werden kann,
dass auch der Einfluss noch immer klein bleibt, wenn verschieden hochgelegene Orte
in Betracht gezogen werden, dass es aber immerhin empfehlenswert ist, den
Barometerstand in Rücksicht zu ziehen, wenn es sich um grössere Differenzen in
den Barometerständen handeln würde, als in vorigem Beispiele angeführt
erscheint.
Jedenfalls ist aber der Barometerstand zu berücksichtigen, wenn es sich um die
Bestimmung des Vakuums aus dem Diagramme eines Niederdruckcylinders handelt.