Titel: | Analytisch-graphisches Verfahren zur Bestimmung der Durchbiegung zwei- und dreifach gestützter Träger. |
Autor: | Max Kloss |
Fundstelle: | Band 318, Jahrgang 1903, S. 235 |
Download: | XML |
Analytisch-graphisches Verfahren zur Bestimmung
der Durchbiegung zwei- und dreifach gestützter Träger.
Von Dr.-Ing. Max Kloss.
(Fortsetzung von S. 216 d. Bd.)
Analytisch-graphisches Verfahren zur Bestimmung der Durchbiegung
zwei- und dreifach gestützter Träger.
B. Der Träger mit verschiedenem Querschnitt.
I. Der zweifach gestützte Träger.
Wir haben bis jetzt immer angenommen, dass der Träger auf seiner ganzen Länge den
gleichen Querschnitt habe. Diese Annahme trifft jedoch in der Praxis sehr oft
nicht zu. Gerade Maschinenwellen, um deren Untersuchung es sich ja in der
vorliegenden Arbeit in erster Linie handelt, werden oft in den Lagern abgesetzt,
so dass sie in diesen Teilen ein geringeres Trägheitsmoment haben, als in der
Mitte, wo der Rotor oder das Schwungrad sitzt. Das hat natürlich mehr oder
weniger Einfluss auf die Gestalt der elastischen Linie. Wir werden im folgenden
auch für diesen scheinbar komplizierten Fall höchst einfache Konstruktionen zur
Bestimmung der elastischen Linie finden.
Aus den früher abgeleiteten Gleichungen ergibt sich, dass sowohl die
Durchbiegungen als auch die Aufbiegungen und die Tangentenabschnitte sämtlich
dem Trägheitsmoment J umgekehrt proportional sind.
Kennen wir daher die Durchbiegungskurve eines Trägers für ein bestimmtes
Trägheitsmoment J1 so erhält man für ein beliebiges anderes Trägheitsmoment J2 die
Durchbiegungskurve einfach durch proportionale Vergrösserung des ganzen
Diagramms in der Richtung der Ordinatenachse im Verhältnis \frac{J_1}{J_2} unter
Beibehaltung der Abszissen.
Die zu gleichen Abszissen x gehörigen Tangenten an
die Durchbiegungskurven zweier gleichbelasteter Träger von verschiedenem
Trägheitsmoment wollen wir als ähnliche Tangenten
bezeichnen (Fig. 14). Dann gilt folgender
Satz:
Textabbildung Bd. 318, S. 235
Fig. 14.
Satz 8. Aehnliche Tangenten schneiden sich auf der
Lagerverbindungslinie. Ihre Abschnitte auf der zugehörigen Lagervertikalen
verhalten sich umgekehrt wie die entsprechenden Trägheitsmomente.
Ferner hatten wir bereits folgende Sätze gefunden:
Satz 4. (S. 148.) Verwandte Tangenten schneiden sich auf
der zugehörigen Lagervertikalen.
Satz 3. (S. 147.) Ist bei einem
Träger der eine Stützdruck gegeben, so ist für alle Punkte zwischen dem
Lager und der Kraftachse die Aufbiegung und der Tangentenabschnitt
unabhängig vom Horizontalabstande und vorn Höhenunterschiede Δy des andern Lagers.
Satz 6. (S. 149.) Für alle Punkte
zwischen der Kraftachse und dem einen Lager sind die auf der andern
Lagervertikalen gebildeten Tangentenabschnitte unabhängig vom
Lagerhöhenunterschiede Δy2. Die zugehörigen
Tangenten sind verwandt.
Für diese letzteren Tangenten wurde ferner auf S. 149 gezeigt, dass ihre
Abschnitte bei gegebenem M und Mx
unabhängig von den Grossen des jenseits von x
liegenden Trägerabschnittes sind, also auch unabhängig davon, ob der Träger jenseits von x
das gleiche Trägheitsmoment hat wie diesseits oder ein anderes.
Mit Hilfe dieser Beziehungen können wir nun die elastische Linie eines Trägers,
der an beliebiger Stelle x abgesetzt ist (Fig. 15), in einfacher Weise aufzeichnen.
Das Trägheitsmoment auf der Strecke x sei = J, dasjenige im Abschnitt l
– x sei = J', und zwar möge J' kleiner als J sein.
Wäre das Trägheitsmoment auf der ganzen Länge des Trägers = J, so könnten wir nach den früher abgeleiteten
Methoden die elastische Linie bestimmen (in Fig.
15 mit J bezeichnet), ebenso könnten wir
die entsprechende Kurve bestimmen für den Fall, dass das Trägheitsmoment auf der
ganzen Länge des Trägers = J' wäre. Wir erhielten
dann die mit J' bezeichnete Kurve (Fig. 15). Die beiden Kurven sind ähnlich, d.h.
ihre Ordinaten sowie die Aufbiegungen und Tangentenabschnitte verhalten sich
umgekehrt wie die Trägheitsmomente. Entsprechende Tangenten schneiden sich auf
der Lagerverbindungslinie. Die wirkliche elastische Linie liegt nun zwischen den
beiden eben erwähnten Kurven. Zur Konstruktion der wirklich auftretenden Kurve
kommen wir durch folgende einfache Ueberlegung.
Wenn wir für den Angriffspunkt 5 der Kraft P nach früherem die Tangente 7/8 konstruiert haben, so wissen wir, dass wegen
Beibehaltung des gleichen Trägheitsmomentes J auf
der Strecke a auch für die resultierende Kurve die
entsprechende, mit 7/8 verwandte Tangente durch
Punkt 7 gehen muss. Ebenso können wir für Punkt 6, in dem der Träger abgesetzt ist, die Tangente
9/10 an die Kurve für durchgehendes J konstruieren, dann ist auch die zur
resultierenden Kurve gehörige, entsprechende Tangente mit 9/10 verwandt, weil ja bis zum Punkte 6 das Trägheitsmoment J beibehalten wird, d.h. die Tangente muss ebenfalls durch Punkt 9 gehen. Das ganze Kurvenstück auf der Strecke x ist somit verwandt mit dem entsprechenden Aste
der Kurve für durchlaufendes J. Aus den gleichen
Gründen ist das Reststück (l – x) der
resultierenden Kurve verwandt mit dem entsprechenden Aste der Kurve für
durchlaufendes J'. Wenn wir also für den zur
Abszisse x gehörigen Punkt 12 dieser Kurve die Tangente 12/13
konstruiert haben, die sich übrigens mit der ihr ähnlichen Tangente 9/10 im Punkte 11 auf
der Lagerverbindungslinie schneiden muss, so ist die entsprechende Tangente der
resultierenden Kurve mit 12/13 verwandt, weil für
beide Kurvenäste das gleiche Trägheitsmoment J'
besteht, d.h. sie muss ebenfalls durch Punkt 13
gehen. Da nun die resultierende elastische Linie im Punkte x keinen Knick haben kann, so muss die zum linken
Kurvenaste gehörige Tangente zusammenfallen mit der zum rechten Aste gehörigen.
Es muss also die Tangente der resultierenden Kurve für Punkt x sowohl durch Punkt 9
als auch durch Punkt 13 gehen. Damit ist aber diese
Tangente eindeutig bestimmt, sie liefert uns auch sofort den zur Abszisse x gehörigen Punkt 14
der resultierenden Kurve.
Während wir für die Ableitung angenommen hatten, dass sowohl für durchlaufendes
J als auch für J'
die vollständigen elastischen Linien aufgezeichnet worden seien, ist dies für
die Konstruktion durchaus nicht nötig. Es genügt vielmehr, wenn wir nur die
Kurve für konstantes J aufzeichnen und die Tangente
im Punkt 6 bestimmen. Hierbei ist der
Tangentenabschnitt auf der Lager vertikalen 2/2'
analog Gleichung (20.
g_{x_2}=M\,\frac{(l-x)^3}{3\,E\,J\,b}
Um nun den Abschnitt (2/13) für die Tangente der
resultierenden elastischen Linie zu bestimmen, braucht man nur in beliebigem
Masstabe die beiden Trägheitsmomente J und J' gleich (2/15) und
(2/16) auf der Lager Verbindungslinie
abzutragen und durch 15 die Parallele zu 10/16 zu ziehen, dann schneidet diese auf 2/2' den gesuchten Punkt 13 ab. Oder noch einfacher: man bestimmt rechnerisch
(2/13)=g'_{x_2}=g_{x_2}\cdot \frac{J}{J'}
Durch die Tangente 9/13 ist nun aber auch der Punkt
14 der resultierenden elastischen Linie
bestimmt. Da nun, wie wir sahen, 9/10 und 9/13 verwandte Tangenten sind in bezug auf den
linken Kurvenast, so kann man sich den linken Teil der resultierenden Kurve
dadurch entstanden denken, dass das Lager 2 um
einen gewissen Betrag vertikal nach unten verschoben wird, sodass das
ursprünglich für konstantes J und horizontale
Lageranordnung gezeichnete Kurvenstück 1/5/6 in die
resultierende Kurve 1/117/4 übergeht. Diese
vertikale Lagerverschiebung ist aber gleich der Differenz der beiden
Tangentenabschnitte
Textabbildung Bd. 318, S. 236
Fig. 15.
Δ = g'x2
– gx2 = (10/13)
Hieraus folgt wieder, dass für einen beliebigen Punkt x' der Kurve die Ordinatendifferenz zwischen der resultierenden
elastischen Linie und derjenigen für konstantes J
gleich
\Delta_{x'}=\Delta\cdot \frac{x'}{l} (für x' ≤ x)
sein muss. Das gleiche gilt auch für die Tangenten. Nun ist aber \Delta\cdot \frac{x'}{l} nichts anderes, als die zum Punkte x' gehörige Ordinatendifferenz zwischen den beiden
verwandten Tangenten 9/10 und 9/13. Wir finden somit aus der Kurve 1/5/6 die resultierende 1/17/14, indem wir die Dreiecksfläche 9/6/14 auf die Kurve 1/5/6 auflegen, d.h.
das Kurvendreieck 1/6/14/1 ist inhaltsgleich mit
dem geradlinigen Dreieck 9/6/14. Ebenso ist das
Dreieck 7/8/18 inhaltsgleich mit 9/10/13. Die Strecke (8/18) ist ebenfalls gleich der ideellen Lagerverschiebung
= Δ = g'x2
– gx2 = (10/13)
Hieraus ergiebt sich eine sehr einfache Konstruktion der Durchbiegung im
Angriffspunkte der Kraft P. Es ist dabeinicht
erst nötig, die ganze Kurve für konstantes J
aufzuzeichnen. Wir verfahren vielmehr folgendermassen:
Wir bestimmen (am besten rechnerisch)
f=(3/5)=\frac{P\cdot a^2\,b^2}{3\,E\,J\,l}
(1/7)=g_a=f\,\frac{a}{b}
(2/8)=g_b=f\cdot \frac{b}{a}
ferner
(2/10)=g_{x_2}=\frac{M_\,(l-x)^3}{3\,E\,J\,b}=\frac{P\cdot a\cdot (l-x)^3}{3\,E\,J\,l}
g'_{x_2}=(2/13)=g_{x_2}\cdot \frac{J}{J'}
\Delta=(10/13)=g_{x_2}\,\left(\frac{J}{J'}-1\right)
Nun tragen wir (8/18) = Δ ab und ziehen 7/18. Dies ist die Tangente im gesuchten
Kurvenpunkte. Sie liefert uns zugleich diesen Punkt 17 und damit die gesuchte Durchbiegung = (3/17).
Aber auch zur weiteren Aufzeichnung der resultierenden Kurve ist es nicht
erforderlich (wie wir vorher zum besseren Verständnis der Konstruktionen
annahmen), erst die Kurve für konstantes J
aufzuzeichnen. Wenn wir, wie eben angegeben, die Punkte 7 und 17 gefunden haben, so konstruieren
wir die Lagertangente 1/19, indem wir die
Aufbiegung (17/19) gleich dem halben zugehörigen
Tangentenabschnitt, also =\frac{1}{2}\cdot (1/7) machen. Kennen wir aber die Lagertangente,
so können wir durch Bestimmung der Aufbiegung nach Gleichung (19. jeden
beliebigen Kurvenpunkt finden. Für den rechten Kurvenast mit dem Trägheitsmoment
J' können wir ebenfalls auf einfachste Weise
die Lagertangente 2/20 konstruieren, indem wir die
Aufbiegung (14/20) gleich dem halben zugehörigen
Tangentenabschnitt, also =\frac{1}{2}\cdot (2/13) machen. Zu diesem Zwecke ist es also nur
nötig, vorher den Punkt 14 zu bestimmen. Dies
geschieht auf folgende Weise:
Wir tragen von 2 aus die ideelle Lagerverschiebung Δ
= (2/21) = (10/13) ab
und behandeln 14 als Punkt einer Kurve für
konstantes J über 1/21
als Lager Verbindungslinie, d.h. wir bestimmen durch
(17/22)=\frac{M\,b^2}{6\,E\,J}=\frac{1}{2}\cdot (21/18)
den Punkt 22 und damit die
ideelle Lagertangente 21/22, die auf der zu x gehörigen Ordinate den Punkt 23 abschneidet. Nun tragen wir die Aufbiegung
(23/14)=(22/17)\cdot \left(\frac{l-x}{b}\right)^3
ab und finden damit den gesuchten Punkt 14. Ist aber 14 und
die Lagertangente 2/20 bekannt, so können wir auch
jeden beliebigen Punkt des rechten Kurvenastes 14/2
durch Ermittelung seiner Aufbiegung nach Gleichung (19. bestimmen. Wir haben
also das Problem, die resultierende elastische Linie eines an beliebiger Stelle
abgesetzten Trägers zu bestimmen, vollständig und in einfachster Weise
gelöst.
Die zuletzt beschriebene Konstruktion mit Hilfe der ideellen Lagerverschiebung
lässt sich auch auf etwas andere Weise ausführen (Fig.
16), die in vielen Fällen sehr gut anzuwenden ist. Anstatt nämlich die
Kurve für konstantes J unter Beibehaltung der
wirklichen Lager Verbindungslinie zu verschieben und dadurch für den
Trägerabschnitt mit dem Trägheitsmoment J den
resultierenden Kurvenzweig zu bestimmen, können wir natürlich auch das Kurvenstück 1/5/6 (Fig. 15 u.
16) beibehalten und dafür die
Lagerverbindungslinie um den entsprechenden Betrag verschieben. Diese einfache
Konstruktion ist in Fig. 16 ausgeführt. Wir
bestimmen zunächst wieder nach den bereits hinreichend oft erwähnten Methoden
die Punkte 5, 7, 8, 9 und 10 für konstantes J. Zwischenpunkte
zwischen 5 und 1
können ebenfalls nebst ihren Tangenten bestimmt werden. Ferner bestimmen wir den
Punkt 6, in dem die Welle abgesetzt ist, sowie die
zugehörige Tangente 6/11. Der
Tangentenabschnitt
Textabbildung Bd. 318, S. 237
Fig. 16.
(2/11)\mbox{ ist }=g_{x_2}=\frac{M\,(l-x)^3}{3\,E\,J\,b}
Der weitere Verlauf der elastischen Linie für konstantes J ist durch die gestrichelte Linie angedeutet. Wir bestimmen nun den
Kurvenast für das Trägheitsmoment J', indem wir uns
denken, dass der Ast 1/5/6 in seiner Lage bleibt,
während infolge des auf dem rechten Abschnitte vorhandenen geringeren
Trägheitsmomentes J' der Endpunkt des Trägers unter
dem Einflüsse des Stützdruckes sich weiter durchbiegt, also von 2 nach 13 wandert.
Diese ideelle Lagerverschiebung (2/13) ist nun nach
der obigen Ableitung
(2/13) = Δ = g'x2, – gx2
Wir brauchen also nur
(11/13)=g'_{x_2}=g_{x_2}\cdot \frac{J}{J'}
abzutragen. Machen wir dann
(6/14)=\frac{1}{2}\cdot (11/13)=\frac{1}{2}\cdot g'_{x_2}
so ist 14/13 die
Lagertangente für den rechten Ast unserer resultierenden elastischen Linie.
Hierbei kann übrigens als Kontrolle für gutes Zeichnen dienen, dass die drei
Geraden 6/11, 2/12 und 13/14 sich in einem Punkte 15 schneiden
müssen, weil die von ihnen auf den Vertikalen 4/4'
und 2/2' gebildeten Abschnitte einander
proportional sind. Mit Hilfe der Lagertangente 13/14 kann dann auch jeder beliebige Kurvenpunkt zwischen 6 und 2 nebst Tangente
ermittelt werden. Die Ordinaten der resultierenden elastischen Linie sind jedoch
nicht von der Lagerverbindungslinie 1/2 aus zu
messen, sondern vielmehr von der ideellen Lagerverbindungslinie 1/13 aus. Die Durchbiegung im Angriffspunkte der
Kraft P ist also f =
(16/5).
Das eben geschilderte Verfahren empfiehlt sich besonders dann, wenn der Träger
mehrfach abgesetzt ist.
Es mag hier noch der Hinweis Platz finden, dass die Richtigkeit der oben
angegebenen Konstruktionen sich auch mitHilfe des Satzes nachweisen lässt,
dass die Arbeit der äusseren Kräfte gleich der inneren Formänderungsarbeit ist.
Der Beweis findet sich in der oben erwähnten Abhandlung des Verfassers.
Ausführlich durchgeführtes Anwendungsbeispiel siehe ebendaselbst.
Um unnötigen Zeitaufwand zu vermeiden, ist es wünschenswert aus den Abmessungen
der Welle sofort überschlagen zu können, ob es nötig ist, das Absetzen der Welle
in den Lagern zu berücksichtigen oder ob man dies vernachlässigen kann, ohne
einen zu grossen Fehler zu begehen. Ausserdem ist es auch wünschenswert, die
Durchbiegung im Angriffspunkt der Kraft P rasch
ermitteln zu können, ohne erst die ganze elastische Linie konstruieren zu
müssen.
Beiden Zwecken dienen die Tabellen 1 und 2 in Fig.
18. Die Bedeutung der angegebenen Werte ergiebt sich aus Fig. 17. Es ist angenommen, dass die Durchmesser
beider Lagerzapfen gleich gross seien und dass auch die Strecken x auf beiden Seiten gleich seien. Für durchgehend
gleichstarke Welle von d φ wäre
f=\frac{M\,a\,b}{3\,E\,J}
Aus der Konstruktion folgt, dass die Zunahme der Durchbiegung infolge des
linksseitigen Absetzens der Welle
\Delta\,f_a=\frac{M\,x^3}{3\,E\,J\,a}\cdot \left(\frac{J}{J_x}-1\right)\cdot \frac{b}{l}=\frac{M\,l^2\cdot b}{3\,E\,J\cdot
a}\cdot \left(\frac{x}{l}\right)^3\cdot \left(\frac{J}{J_x}+1\right) ist.
Also
\frac{\Delta\,f_a}{f}=\frac{l^2}{a^2}\cdot \left(\frac{x}{l}\right)^3\cdot \left(\frac{J}{J_x}-1\right) (58.
Da der Ausdruck
\left(\frac{x}{l}\right)^3\cdot \left(\frac{J}{J_x}-1\right)
auch in den späteren Untersuchungen über dreifach
gelagerte Wellen eine Rolle spielt, wollen wir ihn der Kürze halber mit λ bezeichnen. Ferner setzen wir
\frac{a}{l}=a . . . . (59.
Textabbildung Bd. 318, S. 237
Fig. 17.
Dann ist
\frac{\Delta\,f_a}{f}=\frac{1}{a^2}\cdot \lambda . . . . (60.
oder in Prozenten
\frac{\Delta\,f_a}{f}=100\,\lambda\cdot \frac{1}{a^2} % . . . . (61.
Die Werte von 100 λ sind nun in Tabelle 1 in Fig. 18 zusammengestellt für verschiedene Werte
von
\frac{x}{l} und \frac{J}{J_x}
Es lässt sich also mit Hilfe dieser Tabelle sofort die prozentuale Zunahme der
Durchbiegung infolge des linksseitigen Absetzens der Welle nach Gleichung (61.
ermitteln. Entsprechend ist für das rechtsseitige Absetzen der Welle in
Prozenten
\frac{\Delta\,f_b}{f}=100\,\lambda\cdot \frac{l^2}{b^2}=100\,\lambda\cdot \frac{1}{(1-a)^2} % (62.
Textabbildung Bd. 318, S. 238
Fig. 18.
Unter den in Fig. 17 gemachten
Voraussetzungen ist für beide Wellenenden λ das
gleiche, also ist die gesamte prozentuale Zunahme der Durchbiegung infolge
beiderseitig symmetrischen Absetzens der Welle
\frac{\Delta\,f}{f}=100\cdot \lambda\cdot \left[\frac{1}{a^2}+\frac{1}{(1-a)^2}\right] % . . (63.
In Tabelle 2 in Fig. 18 sind die Werte von
\left[\frac{1}{a^2}+\frac{1}{(1-a)^2}\right]
für verschiedene Werte von α
zusammengestellt. Es finden sich hierbei nur Werte von α ⋜ 0,5. Sollte α > 0,5 sein, so sucht
man den zu 1 – α gehörigen Wert in der Tabelle auf,
da beide Werte identisch sind.
Als Beispiel für die Anwendung der Tabelle 2 in Fig.
18 nehmen wir eine Welle an, bei der die beiden Lagerzapfen
gleichmässig abgesetzt sind, und zwar möge
\frac{J}{J_x}=1,69 und \xi=\frac{x}{l}=0,16
sein. Ferner sei α = 0,42.
Aus Tabelle 1 entnehmen wir 100 λ = 0,28 und aus
Tabelle 2
\left[\frac{1}{a^2}+\frac{1}{(1-a)^2}\right]=8,64
Wir erhalten somit für den vorliegenden Fall eine prozentuale Zunahme der
Durchbiegung von
p = 0,28 . 8,64 = 2,4%
Die wirklich auftretende Durchbiegung ist dann
f=1,024\cdot \frac{M\,a\,b}{3\,E\,J}
Da die eben gewählten Verhältnisse ungefähren Mittelwerten, wie sie in der Praxis
oft vorkommen, entsprechen, sehen wir, dass das Absetzen der Welle in den Lagern
meist nur geringen Einfluss auf die Durchbiegung hat. Wir könnten hier ruhig
diesen Einfluss vernachlässigen, da der Unterschied noch innerhalb der
Fehlergrenze liegt, die bei Ermittlung des Gewichtes und des magnetischen Zuges
auftritt.
(Schluss folgt.)